SNDT Women's University

Usha Mittal Institute of Technology

Name of Progrme: Bachelor of Technology

Name of the course: Electronics Engineering

Program Outcomes

Engineering Graduates will be able to:

PO1. Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.

PO2. Problem analysis: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.

PO3. Design/development of solutions: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.

PO4. **Conduct investigations of complex problems**: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.

PO5. **Modern tool usage**: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.

PO6. The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.

PO7. Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.

PO8. Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.

PO9. Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.

PO10. Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.

PO11. Project management and finance: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader

in a team, to manage projects and in multidisciplinary environments.

PO12. Life-long learning: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

Program Specific Outcomes

At the end of the program, the student:

PSO1. Should be able to understand the concepts and demonstrate knowledge in the field of Communication Engineering /networking, Signal processing, Embedded system and semiconductor technology.

PSO2. Should be able to design projects using modern design tools to associate the learning from the courses to arrive at solutions to real world problems.

PSO3. Will be able to use research based knowledge and research methods for investigation and analysis of Complex problems.

PSO4. Should possess the skills to communicate in both oral and written forms, the work already done and the future plans with necessary road maps, demonstrating the practice of professional ethics and the concerns for societal and environmental wellbeing

Course Outcomes

Semester-I

Course Code	Course Name	Course Outcomes
Basic Science course (BSC101)	Applied Science (Physics and Chemistry)	 Learn about electric and magnetic fields. Learn about scalar and vector fields. Maxwell's equations that define basic laws of electromagnetism. Propagation of electromagnetic waves through free space (Vacuum or Non conducting media). Analyse atomic and molecular structure in terms of wavefunctions, charge densities and energy level diagrams. Obtain quantitative information about energy levels through molecular spectroscopic methods such as electronic, vibrational, rotational and nuclear magnetic resonance (NMR) spectroscopy. Rationalise periodic properties such as ionization potential,
Basic Science course (BSC103)	Mathematics–I	 electronegativity, oxidation states and electronegativity The students will learn: To apply differential calculus to notions of curvature and to improper integrals. Apart from some other applications they will have a basic understanding of Beta and Gamma functions. The fallouts of Rolle's Theorem that is fundamental to application of analysis to Engineering problems. The tool of power series and Fourier series for learning advanced Engineering Mathematics. To deal with functions of several variables that are essential in most branches of Engineering. The essential tool of matrices and linear algebra in a comprehensive manner.

Engineering Science Courses (ESC101)	Basic Electrical Engineering	 To understand and analyse basic electric and magnetic circuits To study the working principles of electrical machines To introduce the components of low voltage electrical installations
Engineering Science Courses (ESC102)	Engineering Graphics & Design	 To prepare you to design a system, component, or process to meet desired needs within realistic constraints such as economic, environmental, social, political, ethical, health and safety, manufacturability, and sustainability To prepare you to communicate effectively To prepare you to use the techniques, skills, and modern engineering tools necessary for engineering practice
	Applied Science Lab	 The physics and chemistry laboratory course will consist of experiments illustrating the principles of physics and chemistry relevant to the study of science and engineering. The students will learn to: Analyse & generate experimental skills Learn and apply basic techniques used in chemistry laboratory for preparation, purification and identification. Employ the basic techniques used in chemistry laboratory for analyses such as chromatography, spectroscopy, volumetric titrations, conductometry. Learn safety rules in the practice of laboratory investigations.
	Basic Electrical Engineering Lab	 Get an exposure to common electrical components and their ratings. 1. Make electrical connections by wires of appropriate ratings. 2. Understand the usage of common electrical measuring instruments. 3. Understand the basic characteristics of transformers and electrical machines. 4. Get an exposure to the working of power electronic converters.
	Engineering Graphics Design	Students prepare for actual work situations through practical training in a new state-of-the-art computer designed CAD laboratory using engineering software
	Induction Program	After completing this course the student will be able to 1. Develop a better understanding and a sense of responsibility towards self, family, country and nature.
		 Acquire knowledge and meta skills about engineering as a profession Develop a keen sense of understanding about basic human values and ethics Appreciate the importance of physical and emotional well being and practices to lead a fulfilling life Bond with peers, teachers, college and syllabus and develop interests in creative and personality development activities
Semester-	II	

Basic Science	Applied Science	1. Imparted knowledge about simple harmonic oscillations,
course	(Physics and	mechanical and electric oscillators.
(BSC102)	Chemistry)	2. Learn about different kinds of damping in harmonic
		oscillators. Learn about non dispersive transverse and
		longitudinal waves in one-dimension, acoustic waves and sound waves.
		3. Know about interference and diffraction phenomena. They will also learn about Michelson Interferrometer (also learn why the result was negative. Learn about why they found no significant difference between the speed of light in the direction of movement through the presumed aether, and the speed at right angles.
		4. Understand how Young's double slit experiment and
		diffraction grating work.
		5. Interaction of radiation with matter, Einstein coefficients, working of different types of Lasers and their application in science, engineering and medicine.
		6. Rationalise bulk properties and processes using
		thermodynamic considerations.
		 Understand the energies existing in a bulk macroscopic system. List major chemical reactions that are used in the synthesis of molecules.
		8. Rationalize the terms and concepts involved in
		Stereochemistry like symmetry operations, chirality, isomerism etc.
Basic Science course	Mathematics-II	1. The mathematical tools needed in evaluating multiple integrals and their usage.
(BSC104)		2. The effective mathematical tools for the solutions of
		differential equations that model physical processes.
		3. The tools of differentiation and integration of functions of a
		complex variable that are used in various techniques dealing
		engineering problems.
Engineering Science	Programming for Problem	1. To formulate simple algorithms for arithmetic and logical problems.
Courses (ESC103)	Solving	 To translate the algorithms to programs (in C language). To test and execute the programs and correct syntax and logical errors.
		4. To implement conditional branching, iteration and recursion.
		5. To decompose a problem into functions and synthesize a
		complete program using divide and conquer approach.
		6. To use arrays, pointers and structures to formulate algorithms and programs.
		7. To apply programming to solve matrix addition and multiplication problems and searching and sorting problems.
		8. To apply programming to solve simple numerical method
		problems, namely rot finding of function, differentiation of function and simple integration.
Engineering	Workshop/Manuf	Upon completion of this course, the students will gain knowledge of
Science Courses	acturing Practices	the different manufacturing processes which are commonly employed in the inductry, to febricate components using different materials
(ESC104)	riacuces	in the industry, to fabricate components using different materials.

Humanities	English	After completing this course, students will
and Social	Linghish	After completing this course, students will
Sciences		1. Acquire basic proficiency in English grammar and vocabulary
including		2. Develop good writing skills
Management		3. Demonstrate skills requires for presentations
courses		4. Acquire skills to participate in interview
HSM (101)		4. Trequire skins to participate in interview
	Applied Science	The students will learn to:
	Lab	1. Estimate rate constants of reactions from concentration of
		reactants/products as a function of time
		2. Measure molecular/system properties such as surface tension,
		viscosity, conductance of solutions, redox potentials, chloride
		content of water, etc
		3. Synthesize a small drug molecule and analyse a salt sample
	Programming for	1. To formulate the algorithms for simple problems
	Problem	2. To translate given algorithms to a working and correct program
	Solving Lab	3. To be able to correct syntax errors as reported by the compilers
		4. To be able to identify and correct logical errors encountered at
		run time
		5. To be able to write iterative as well as recursive programs
		6. To be able to represent data in arrays, strings and structures and
		manipulate them through a program
		7. To be able to declare pointers of different types and use them in
		defining self-referential structures.
		8. To be able to create, read and write to and from simple text files.
		liles.
	Workshop	1. Upon completion of this laboratory course, students will be
	/Manufacturing	able to fabricate components with their own hands.
	Practices Lab	2. They will also get practical knowledge of the dimensional
	English Practical	accuracies and dimensional tolerances possible with different
		manufacturing processes.
		3. By assembling different components, they will be able to
		produce small devices of their interest.
	English Practical	The student will acquire basic proficiency in English including
		reading and listening comprehension, writing and speaking skills.

	Environmental Sciences	 After completing this course, students will be able to Apply the basic knowledge of environmental protection, sustainable development and improvement. Categorize and scrutinize impact of human development on natural resources. Provide the student with an understanding of radioactive waste. Interpret the impact of environmental problems on socio economic growth and human health. Apply various strategies, technological improvement, and methods for sustainable management of environmental systems and for the remediation of degraded environment. Apply different Science and Technology (S&T) based sustainability solutions and limitations as well as to identify impact of human population on the natural environment and human health.
EE Semes	ster-III	
EE 341211	Electronics Devices	 Understand the principles of semiconductor Physics Design & analyze transistorized circuits with biasing techniques Understand different types of diodes and its day to day application
EE 341221	Electronics Devices Lab	 Analyze the practical behavior or characteristics of semiconductor diode Examine the different clippers and clampers circuit rectifier and filters by simulation Experimentally analyzing the different configurations of transistors Experimentally determine Voltage Gain, Current Gain, Input Impedance, Output Impedance of a BJT amplifier in CE mode
EE 341212	Digital System Design	 Design and analyze combinational logic circuits Design & analyze modular combinational circuits with MUX/DEMUX, Decoder, Encoder Design & analyze synchronous sequential logic circuits Use HDL & appropriate EDA tools for digital logic design and simulation
EE 341222	Digital System Design Lab	 Implement and analyze combinational logic circuits with gates Implement & analyze modular combinational circuits with MUX/DEMUX, Decoder, Encoder Implement & analyze synchronous sequential logic circuits Effective use of HDL & appropriate EDA tools for digital logic design and simulation
EE 341213	Signal and System	 Analyze different signals Represent continuous and discrete systems in time and frequency domain using different transforms Investing whether the system is stable

		4. Sampling and reconstruction of a signal
EE 341214	Computer Architecture	 Learn how computers work Know basic principles of computer's working Analyze the performance of computers Know how computers are designed and built Understand issues affecting modern processors (caches, pipelines etc.)
BSC 311211	Applied Mathematics	 The objective of this course is to familiarize the prospective engineers with techniques in basic Z Transform, Fourier Series and Vector spaces. It aims to equip the students with standard concepts and tools at an intermediate to advanced level that will serve them well towards tackling more advanced level of mathematics and applications that they would find useful in their disciplines.
MC 381251	Constitution of India	 Understand the constitutional framework and state and central policies Display awareness of fundamental right and duties of a citizen Demonstrate awareness about engineering ethics and responsibilities of an engineer Display awareness about human rights in India
HSMC 331211	Economics for Engineer	 Understand and demonstrate core micro-economic terms, concepts, and theories. Understand elasticity, market structure, cost, tax, budget in Indian economy. Describe how economic trade-offs and social values impact public/private policy Analyze the applications of linear programming concepts in economics.
	Data Structure and Algorithm	 For a given logic sentence express it in terms of predicates, quantifiers, and logical connectives For a given a problem, derive the solution using deductive logic and prove the solution based on logical inference Evaluate Boolean functions and simplify expressions using the properties of Boolean algebra
EE Seme	ster-IV	
EE 441211	Electromagnetic Waves*	 Characterize uniform plane wave Calculate reflection and transmission of waves at media interface Analyze wave propagation on metallic waveguides in modal form Understand principle of radiation and radiation characteristics of an antenna

EE 441221	Electromagnetic Waves Labs*	 Acquire more insight into field concepts through problem solving Understand wave propagation and associated phenomena through visual/simulation tools available
EE 441212	Analog Circuits*	 Analyze various configurations amplifier circuits Design sinusoidal and non-sinusoidal oscillators Understand the functioning of OP-AMP and design OP-AMP based circuits Design ADC and DAC
EE 441222	Analog Circuits Lab*	 Implement and analyze various configurations amplifier circuits Implement and analyze various sinusoidal and non-sinusoidal oscillators Implement and analyze various OP-AMP based applications circuits.
EC 441213	Microcontrollers *	 Do assembly language programming Do interfacing design of peripherals like, I/O, A/D, D/A, timer etc. Develop systems using different microcontrollers Understand RSIC processors and design ARM microcontroller-based systems
EC 441223	Microcontrollers Lab*	 Implement and analyze the algorithms to perform various arithmetic operations using 8085 and/ or 8051 Implement and analyze the algorithms to perform various logical operations using 8085 and/ or 8051 Implement and analyze the algorithms to perform various operations using branching instructions of 8085 and/ or 8051 Implement and analyse the algorithms to perform various data transfer operations using 8085 and/ or 8051 Implement and analyse the algorithms to perform various data sorting operations using 8085 and/ or 8051
EC 441214	Probability Theory and Stochastic Processes *	 Understand representation of random signals Investigate characteristics of random processes Make use of theorems related to random signals Understand propagation of random signals in LTI systems.
EC 441215	Network Theory*	 Understand basic electrical circuits with nodal and mesh analysis. Appreciate electrical network theorems. Apply Laplace Transform for steady state and transient analysis. Determine different network functions. Appreciate the frequency domain techniques
HSMC 431211	HSMC-03* ^{\$}	 To develop an understanding of IPR. To understand patents and filing them To develop an understanding of Trademark , Copyright and geographical indications and filing them Analyze the case studies based on IPR laws in India and Abroad.

PS 49122	1 Object Orio Programin	
EE Semes	-	
Course Code	Course Name	Course Outcomes
5151	MICROPROCES ORS–I	 I. Understand architecture of 8085, register organization in 8085. I. Learn the instruction set of 8085 and it's classification, Program Development for 8085, Understand various addressing modes of 8085. J. Understand the exact execution by drawing timing diagrams. To study various interfacing devices like latch, decoder, tristate buffer and the interfacing methods. Learn the interrupt structure, Stack memory concept Design of minimum system design for 8085. Learn organization and operation of various peripheral devices like 8255,8253,8259,8357,ADC and DAC. Interfacing of all peripherals with 8085.
5152	FILTERS THEORY	 8. Interfacing of all peripherals with 8085. 1. Understand the concept of different types of filter. 2. Concept of network functions and their reliability. 3. Design of an analog filters using different Approximation methods 4. Synthesis of active filter and passive filter. 5. Design of different types of digital filters and its realization. 6. Design and analysis of active filters
5153	ANTENNA THEORY	 Identify basic antenna parameters. Design and analyze antenna arrays. Design and analyze wire and aperture antennas. Identify the characteristics of radio-wave propagation

5154	CONTROL	7. Students can able to understand and categorize different types of
	SYSTEMS	system and identify a set of algebraic equations to represent and
		model a complicated system into a more simplified form8. Students can able to Characterize any system in Laplace domain to
		illustrate different specification of the system using transfer function
		concept
		9. Students can able to interpret different physical and mechanical
		systems in terms of electrical system to construct equivalent electrical models for analysis
		10. Students can able to employ time domain analysis to predict and
		diagnose transient performance parameters of the system for standard input functions
		11. Students can formulate different types of analysis in frequency
5101		domain to explain the nature of stability of the system.
5101	ONSKILLS-II	After Completing this course, students will be able to
	ONDIALLS II	1. Design Technical documents with precision of language,
		vocabulary and style
		2. Recognize attributes of a suitable candidate for a job by
		participating in resume writing, group discussions and interviews
		3. Deliver formal presentations
		4. Demonstrate Knowledge of Professional Ethics and Behavior
5155	PRINCIPLES OF	1. Describe the basic principle of communication system
	COMMUNICATI	2. Demonstrate and solve communication system parameters for
	ON	various types of modulation and demodulation techniques.3. Apply the concepts to practical applications in telecommunication
		3. Apply the concepts to practical applications in telecommunication
5156	SIGNAL AND	1. Understand the properties of continuous and discrete time signals.
	SYSTEMS	2. Understand the properties of continuous and discrete time systems.
		3. Use mathematical model of signals for analysis.
		4. Represent a system by mathematical model.
		5. analyze and predict the behaviors of linear system.
		6. Use different tools in the time- and frequency- domain.
5251	MICROPROCESS	
	OR-I LAB	operations using 8085
		2. Implement and analyze the algorithms to perform various logical operations using 8085
		3. Implement and analyze the algorithms to perform various operations
		using branching instructions of 8085
		4. Implement and analyze the algorithms to perform various data transfer operations using 8085
		5. Implement and analyze the algorithms to perform various data
		sorting operations using 8085

5252	PRINCIPLES OF COMMUNICATI ON LAB	 understand concept of all types of modulation techniques using tool understand concept of all types of de- modulation techniques using simulation tools study of various coding techniques Practical application of all modulation, demodulation techniques
5253	FILTERS THEORY LAB	 Design of different analog filters and digital filters Analysis of different types of filters Applications of filters Frequency response of different filters
5254	CONTROL SYSTEM LAB	 Demonstrate the concept of synchronous transmitter and receiver by using Hardware Solve different block diagrams of control systems using software tool Show different time-domain responses for different standard inputs in computer as well as using hardware Analyze and examine the stabilities of different closed (automatic) control systems using different stability-analysis tool e.g. Nyquist or Bode plots.
5256	SIGNAL ANI SYSTEMS TUTORIAL	A
EE Se	emester-VI	
6151	OR-II	 1.Learn architecture of 8086, register organization inside it, comparison with 8085. 2.Instruction set of 8086 and program development for 8086. 3.Understand architecture of 80386, register organization, modes of operation, address calculation mechanism. 4.Learn architecture of 8051, register organization, instructions of 8051, program development for 8051. 5.To study advanced microcontrollers like ARM processors with their architecture, register organization
6141	AUTOMOTIVE ELECTRONICS	CO1: Explain batteries, starting system, charging and ignition system, lighting and other electronic system inside an automobile CO2: Understand all sensors and actuators used inside an automobile CO3: Understand the functioning of Chassis and brake system

6142	DIGITAL	1. Study the time domain and the frequency domain representation of
	SIGNAL	signals.
	PROCESSING	2. Understand the different methods for transformation of signals.
	AND	3. Understand the properties of discrete Fourier transform.
	APPLICATIONS	4. Use mathematical models of signals for analysis.
		5. Represent a DT-LTI system by different structures.
		6. Analyse and predict the behavior of linear systems.
		 Get the Knowledge of Digital signal processor Applications of DSP processor
		8. Applications of DSF processor
6143	INDUSTRIAL	1.Relatebasic semiconductor physics to properties of power devices, and
0145	ELECTRONICS	combine circuit mathematics and characteristics of linear and non-linear
	LELCINOIVICS	devices.
		2. Describe basic operation and compare performance of various power
		semiconductor devices, passive component and switching circuits
		3.Design and Analyze power converter circuits and learn
		to select suitable power electronic devices by assessing their requirements of
		application fields.
6152	DIGITAL	1. Understand the basics of information theory, source coding techniques and
		calculate Entropy of source
	ON	2. Describe and determine the performance of different error control coding
		schemes for the reliable transmission of digital representation of signals and
		information over the channel
		3. Understand the generation, detection signal space diagram, spectrum,
		bandwidth efficiency, and probability of error analysis of different band pass
		modulation techniques.
		4. Describe and determine the performance of line codes and methods to
		mitigate inter symbol interference. 5. Learn the generation and detection of base band system
6251	MICROPROCESS	
0231	OR II LAB	operations using 8086 and /or 8051
	OK II LAD	2. Implement and analyze the algorithms to perform various logical
		operations using 8086
		3. Implement and analyze the algorithms to perform various operations
		using branching instructions of 8086
		4. Implement and analyze the algorithms to perform various data
		transfer operations using 8086
		5. Implement and analyze the algorithms to perform various data
		sorting operations using 8086
6241	AUTOMOTIVEE	1. have knowledge on intelligent vehicle system.
	LECTRONICS	2. Can perform interdisciplinary research and industry driven
	LAB	innovation in embedded systems, control systems and automotive
		systems.
		3. can study and analyze automotive sensors and actuators.
6252	DSP LAB	1. Applications of DFT properties for analysis of DT-LTI systems
		2. Applications of DSP processors
		3. Different mathematical tools for transformation of
		signals from time domain to frequency domain or vice-versa.
L		1

6242	POWER	1. Formulate and analyze a power electronic design performance.
	ELECTRONICS LAB	2. Identify the critical areas in application levels and derive typical alternative solutions, select suitable power converters to control Electrical Motors and
	LAD	other industry grade apparatus.
		3. Recognize the role power electronics playing the improvement of energy
		usage efficiency and the applications of power electronics in emerging areas
6253	DIGITAL	1. Able to design and implement different modulation and
	COMMUNICATI	demodulation techniques.
	ON LAB	2. Able to understand basic theories of Digital communication
		system in practical
		3. Able to analyze digital modulation techniques by using MATLAB tools.
		4. Able to identify and describe different techniques in
		5. Modern digital communications, in particular in source coding
		using MAT Lab or open-source tools.
6349	Seminar	1. Study research papers for understanding of recent advancements in
		technologies of their interest, to summaries and review them, with
		the help of research papers published in journals (like IEEE,
		Elsevier).
		2. Identify the latest trends in the technologies of their interest
		3. Impart skills in preparing detailed report describing the selected
		topic for presentation
		4. Effectively communicate with the help of an oral and graphical
		presentation before examiners
EE Seme	ester VII	
7541	CONSUMER	1. List technical specification of electronics Audio system
	ELECTRONICS	2. Trouble shoots consumer electronics products like TV, DVD, office
		applications, etc 3. Identify and explain working of various color TV transmission blocks.
		4. Understand various functions of Camcorder and shoot a video and take
		snapshots and save them in appropriate format.
7540		5. Understand the basic functions of various consumer electronic goods.
7542	MECHATRONIC S	
	5	1. Students will be well-versed with the concepts in mechanical,
		electronics, control, software, and computer engineering, and a
		solid command of the newest technologies
		2. Acquire the ability to design, analyze, and test "intelligent"
		products and processes that incorporate appropriate computing
		tools, sensors, and actuators
		3. Understand key elements and basic concept of the mechatronics system
		 Get the knowledge of various sensors and actuators applicable to Mechatronics system
		5. Able to interface various electromechanical devices.
		6. Practice professional and ethical responsibility and be aware of the

		impact of their designs on humankind and the environment
7551	EMBEDDED	The co for embedded system are after studying the subject the students will
/331	AND IOT SYSTEM	be
		1. Able to define what an embedded system is in terms of its interface
		2. Will be able to identify key design features of designing an embedded system
		3 easily differentiate between a normal OS and RTOS with mathematical behavior for task scheduling
		4 enumerate the components of an embedded system
		name the core hardware components most commonly used in IoT devices
		5.describe the interaction between software and hardware in an IoT device
7543	VLSI DESIGN	1. Identify the various IC fabrication methods.
		2. Express the Layout of simple MOS circuit
		3. Apply the Lambda based design rules for subsystem design
		 Learn various low power VLSI design techniques Understand various HDL languages
7751	Coding Techniques and Cryptography (Elective I)	On the completion of this course, students will be able to
		1. Understand error-control coding
		2. Understand encoding and decoding of digital data stream.
		3. Be familiar with the methods of generation of these codes and their decoding techniques.
		4. Understand the concept of cryptography and how it is used to secure information.
		5. Student can implement their own cryptographic algorithm.
7643	VLSI DESIGN LAB	1. Learn the fundamental principles of VLSI circuit design in digital and analog domain.
		2. Learn various aspects of a VLSI design circuit software in real time
		Understand DC analysis, Transient analysis, power analysis for various VLSI circuit styles with their thorough meaning in real time.
7642	MECHATRONIC S LAB	1. Identification of key elements of mechatronics system and its representation interms of block diagram
		2. Understanding the concept of signal processing and use of
		interfacing systems such as ADC, DAC, digital I/O
		3. Interfacing of Sensors, Actuators using appropriate DAQ micro- controller
		4. Time and Frequency domain analysis of system model (for control application)

7651 7641	EMBEDDED AND IOT SYSTEMS LAB CONSUMER	 To create an environment for design, develop and testing of small IoT solutions, using python and simulation software The students will also be able to identify key components of IoT hardware and software The students will be able to use Linux OS concepts to implement basic task related operations Trouble shoots consumer electronics products like TV, DVD, office
	ELECTRONICS LAB	 applications, etc 2. Identify and explain working of various color TV transmission blocks. 3. Understand various functions of Camcorder and shoot a video and take snapshots and save them in appropriate format. 4. Understand the basic functions of various consumer electronic goods.
7851	Coding Techniques and Cryptography (Elective I) lab	 Learn the open-source software which is used to implement Cryptographic Algorithm. Implementation of Symmetric key Algorithm Implementation of Asymmetric Key Algorithm Implement Finite field algorithm
7941	Project- stage I	 Understand programming language concepts, particularly Java and object-oriented concepts or go through research activities. Plan, analyze, design and implement a software project or gather knowledge over the field of research and design or plan about the proposed work. Demonstrate the ability to locate and use technical information from multiple sources. Demonstrate the ability to communicate effectively in speech and writing. Learn to work as a team and to focus on getting a working project done on time with each student being held accountable for their part of the project. Learn about and go through the software development cycle with emphasis on different processes - requirements, design, and implementation phases.
EE Semes	ster VIII	
8541	COMPUTER AND COMMUNICATI ON NETWORK	 To develop an understanding of computer networking basics. Describe how computer networks are organized with the concept of layered approach. To develop an understanding of different components of computer networks, various protocols, modern technologies and their applications Analyze the contents in a given data link layer packet, based on the layer concept. Design logical subnetting, IP addressing and understand concepts of routing protocol and TCP/IP

8741	ON	 Recognize the fundamentals of Management thoughts that are vital for the development of conceptual frame work of Management as a discipline. essential concepts of information and communication technologies input and output devices computer hardware and software information technology tools Relate knowledge of ethics in the context of corporate social responsibility and advertising, brand management and product positioning across cultural diversities.
8742	Hardware Descriptive Languages (Elective II)	 Identify the various IC fabrication methods. Express the Layout of simple MOS circuit Apply the Lambda based design rules for subsystem design Learn various low power VLSI design techniques Understand various HDL languages
8743	WIRELESS AND MOBILE COMMUNICATI ON (Elective II)	 Understand the working principles of the mobile communication systems. Understand the relation between the user features and underlying technology. Analyze mobile communication systems for improved performance An ability to explain multiple access techniques for Wireless Communication An ability to evaluate design challenges, constraints and security issues associated with Ad-hoc wireless networks
8641		 The objective of this lab course is to get practical knowledge of working principles of various communication protocols. analyze structure and formats of TCP/IP layer protocols using network tools such as Wireshark and network simulators. Implementing various network algorithms such as error control, error detection, routing, and security related algorithms. 1. Understand the practical approach to network communication protocols. 2. Understand network layers, structure/format and role of each network layer. 3. Able to design and implement various network application such as data transmission between client and server, file transfer, real-time multimedia transmission. Understand the various Routing Protocols/Algorithms and Internetworking

	ELECTIVE LAB II	 Evaluate the impact of different propagation conditions in estimation of received signal power. Configure different wireless communication systems To test functioning of 2G, 3G and 4G communication systems.
		Analyse different protocols of WLAN System
8941	Project II	 Understand programming language concepts, simulation tools or go through the research work and gather knowledge over the field and develop an ability to apply them to software design of real life problems in an industry/ commercial environment Plan, analyze, design a software project and demonstrate the ability to communicate effectively in speech and writing. Understand how to write and publish technical paper.
8942	Project III	 Learn about and go through the software/hardware development cycle with emphasis on different processes -requirements, design, and implementation phases Gain confidence at having conceptualized, designed, and implemented a working, medium sized project with their team. Understand how to present and give demo of project on various platforms.