Undergraduate Programmes 2023 May (Physics) Tentative Template

Terminologies

Abbreviation	Full-form	Remarks	Related to	
			Major and	
			Minor	
			Courses	
Major (Core)	Main Discipline			
Major (Elective)	Elective Options		related to the	
			Major	
			Discipline	
Minor Stream	Other Disciplines (Inter/	either from the		
	Multidisciplinary) not	same Faculty or		
	related to the Major	any other faculty		
OEC	Open Elective Courses/		Not Related	
	Generic		to the Major	
			and Minor	
VSEC	Vocational and Skill			
	Enhancement Courses			
VSC	Vocational Skill Courses		Not Related	Advanced
			to the Major	laboratory
			and Minor	practical
				of Major
SEC	Skill Enhancement Courses		Not Related	
			to the Major	
			and Minor	
AEC	Ability Enhancement	Communication	Not Related	
	Courses	skills, critical	to the Major	
		reading, academic	and Minor	
		writing, etc.		
VEC	Value Education Courses	Understanding	Not Related	
		India,	to the Major	
		colonico/oducation		
		Digital and		
		technological		
		solutions, Health		
		& Wellness. Youa		
		education, sports.		
		and fitness		

IKS	Indian Knowledge System	I. Generic IKS	Subject	
	5,	Course: basic	Specific IKS	
		knowledge of the	related to	
		IKS	Major	
		II. Subject	2	
		Specific IKS		
		Courses:		
		advanced		
		information		
		pertaining to the		
		subject: part of		
		the major credit.		
OJT	On-Job Training	corresponding to	Related to	
	(Internship/Apprenticeship)	the Major Subject	the Major	
FP	Field projects	corresponding to	Related to	
		the Major Subject	the Major	
CC	Co-curricular Courses	Health and	Not Related	
		Wellness, Yoga	to the Major	
		education sports,	and Minor	
		and fitness,		
		Cultural Activities,		
		NSS/NCC and	*	
		Fine/		
		Applied/Visual/		
		Performing Arts		
CE	Community Engagement		Not Related	
	and service		to the Major	
			and Minor	
RP	Research Project	corresponding to	Related to	
		the Major Subject	the Major	

Programme Template:

Programme		B.Sc.
Degree		
e.g.		
B.A./B.COIII./B.SC./ B.M.S.,		
Parenthesis if any		Physics
(Specialization)		
e.g. History, Human		
Development, English, etc.		
Preamble (Brief Introduction		The NEP scheme of Physics syllabus is to be implemented from the X_{2024}^{2024} 2025. The cullabus will account to be instantial to the higher
to the programme)		A. 1. 2024-2025. The synabus will cover the basics to the higher advances of the subject over the four years of the program. While
		following UGC guidelines and approval from appropriate Ethical
		Committee, the use of animals could be included and / or substituted
		the same with audiovisual, ICT and simulation aids such that the
		syllabus is made more interesting with new, innovative topics.
		courses would be helpful for the teachers in order to gauge the depth
		of the knowledge to be imparted keeping to the higher orders of
		learning as per Bloom's revised taxonomy. Use of innovative
		pedagogies such as inquiry-based, flipped classroom, blended learning,
		project-based, skill-based, participative learning and such others.
		understanding through 'out of class' learning. Assessment methods
		would be outcome-based which would help in mapping the curricula
		for the attainment of the course outcomes.
Programme Specific		After completing this programme, Learner will
Outcomes (PSOs)		
	1.	Apply the field-based and the in-class knowledge of animal biology to
Action Verbs demonstrating		identify and classify the animals in their natural habitat up to class 8. Develop that attributes that promote lifelong learning k extension
(Major) discipline-related		communication, and Leadership skills
knowledge acquisition, mastery	2.	Identify the various types of animal behaviour, and animal interactions
over cognitive and professional,		with the ecosystem
e.g. demonstrate sound	3.	Relate the applications of specialized fields such as developmental
understanding of, analyse,	1	Design the research activity that involves application of critical
Action Verbs demonstrating Major) discipline-related mowledge acquisition, mastery over cognitive and professional, vocational skills are to be used e.g. demonstrate sound inderstanding of, analyse, compare, create, design, etc minimum 5)	4.	thinking and experimental skills
	5.	Practice the scientific writing and documentation of research while
		conducting the research projects
	6.	research, education, and animal management – skills acquired
	7.	Acquire in-depth knowledge of biodiversity and adopt an eco-friendly
		approach towards life ensuring sustainable use of resources SNDTWU
Fligibility Criteria for		
Programme		10+2 certificate preferably with Physics as one of the major subjects
_		
Intake		
(For SNDT WU Departments		
and Conducted Colleges)		
	1	

- External Examination does not always mean Theory paper. It may practical examination, Product submission, projects, etc. checked by external examiners.
- Internal evaluation should not be Written Theory papers like Unit tests. Internal marks will be acquired through practical, small group or individual Projects, activities, presentations, seminars, workshops, products, assignments, application-based work, reports, etc.
- Practical may be part of the main courses alongwith theory modules instead of having separate courses of practical work.

Structure with Course Titles

(Options related to our area of study to be provided with "OR" for baskets of different types)

SN	Courses	Type of Course	Credits	Marks	Int	Ext
	Semester I					
10132211/ 10132212 (Any one?)	T1. Modern Physics T2. Basic Electronics	Major (Core)	4	100	50	50
10132221 (title?)	P1. Practical 1	Major (Core)	2	50	0	50
10432211	Electrical and Electronic gadgets for all	ÓEC	4	100	50	50
		VSC	2	50	50	0
10732201	Basic Measurements and Calculations	SEC	2	50	50	0
		AEC	2	50	0	50
		IKS	2	50	0	50
		VEC	2	50	50	0
		CC	2	50	50	0
			22	550	300	250
	Semester II					
20132211/ 20132212 (Prerequsite?)	T3. Mechanics AndWavesT4. Thermodynamics	Major (Core)	4	100	50	50
20132221 (title?)	P2. Practical 2	Major (Core)	2	50	0	50
20332221	Mathematical Techniques	Minor Stream	2	50	0	50
20432211	Basics of Web Designing	OEC	4	100	50	50

		VSC	2	50	0	50
20732201	Photography	SEC	2	50	50	0
		AEC	2	50	50	0
		VEC	2	50	0	50
		CC	2	50	50	0
			22	550	250	300

Exit with UG Certificate with 10 extra credits (44 + 10 credits)

SN	Courses	Type of Course	Credits	Marks	Int	Ext
	Semester III					
30132211	Thermodynamics	Major (Core)	4	100	50	50
30132212	Modern Physics	Major (Core)	4	100	50	50
		Minor Stream	4	100	50	50
		OEC	2	50	0	50
30632221 (title?)	Physics Practicals-III	VSC	2	50	50	0
		AEC	2	50	0	50
		FP	2	50	50	0
		CC	2	50	50	0
			22	550	300	250
	Semester IV					
40132211	Digital Electronics	Major (Core)	4	100	50	50
40132212	Material Science	Major (Core)	4	100	50	50
		Minor Stream	4	100	50	50
		OEC	2	50	0	50
30732221 (title?)	Practical- IV	SEC	2	50	0	50
		AEC	2	50	0	50
		CEP	2	50	50	0
		CC	2	50	50	0
			22	550	250	300

Exit with UG Dip	loma with 10 ext	ra credits (44	+ 10 credits)
------------------	------------------	----------------	---------------

SN	Co	urses	Type of Course	Credits	Marks	Int	Ext
	Semeste	r V					
50132211	Solid sta	te Physics	Major (Core)	4	100	50	50
50132212	Thermal Statistica	and al Physics	Major (Core)	4	100	50	50
50132213	Atomic a Molecula	nd r Physics	Major (Core)	2	50	0	50
50232211/ 50232212/ 50232213	i) ii) iii)	Microproce ssor Python Space	Major (Elective)	4	100	50	50
		Biology					
			Minor Stream	4	100	50	50
			VSC	2	50	50	0
			FP/CEP	2	50	50	0
				22	550	300	250
	Semeste	rvi					
60132211	Electrody	namics	Major (Core)	4	100	50	50
60132212	Nuclear	physics	Major (Core)	4	100	50	50
60132213	Relativity	Y	Major (Core)	2	50	0	50
60232211/ 60232212/ 60232213	i) ii) iii)	Microcont roller C++ Computat ional Physics	Major (Elective)	4	100	50	50
			Minor Stream	4	100	50	50
			ΟJΤ	4	100	50	50
				22	550	250	300

Exit with Degree (3-year)

4-Year Degree with Honors

SN	Courses	Type of Course	Credits	Marks	Int	Ext
	Semester VII					
70132211	Electronics	Major (Core)	4	100	50	50
70132212	Classical Mechanics	Major (Core)	4	100	50	50
70132213	Solid state Electronics	Major (Core)	4	100	50	50
70132214	Nuclear Physics	Major (Core)	2	50	50	0
70232211/ 70232212	Digital electronics/ Communication Channels	Major (Elective)	4	100	50	50
		Minor Stream (RM)	4	100	50	50
			22	550	300	250
	Semester VIII					
80132211	Advance Atomic Physics	Major (Core)	4	100	50	50
80132212	Advance Electronics	Major (Core)	4	100	50	50
80132213	Particle Physics	Major (Core)	4	100	50	50
80132214	Mathematical Physics	Major (Core)	2	50	0	50
80232211/ 80232212	Digital electronics/ Communication Channels	Major (Elective)	4	100	50	50
		Ττο	4	100	50	50
			22	550	250	300

Course Syllabus F. Y B Sc (Physics) Semester I

1.1 Major (Core). Marks 50 (15 Hrs)

Course	e Title	T2. Modern Physics	
Course	e Credits	2	
Course	e Outcomes	After going through the course, learners will be able to)
		1. Use appropriate and accurate scientific/technical terminology t communicate theirobservations and conclusions.	ĊO
		2. comprehend the scientific articles and research papers.	
		3. comprehend the scientific articles and research papers.	
		4. perform experiments and explain the results with appropriate models	scientific
		5. seek clear understanding of concepts and ideas that sha through problemsolving.	pe reasoning
1.1	Black body rad	diation (no derivation), ultraviolet catastrophe	[5 Hr]
	Photoelectric of	effect, Compton Effect, Pair production and	
	annihilation, g	gravitational red shift.	
	AB :2.2, 2.3,2	.7,2.8	
	Problem solving	g session	[2 Hr]
1.2	Discovery of 2	X-ray, X-ray production, characteristic x-ray spectra,	[6 Hr]
	applications of	f X-ray, X-ray diffraction	
	AB :2.5,2.6		
			[2 II.]
	Problem solving	g session	[2 Hr]
	References:		
	1 Arthur B	eiser, Concepts of Modern Physics Sixth Edition,	
	McGraw	-Hill Publications.	
	2. Stepher	n T. Thornton and Andrew Rex, Modern Physics for	
	scientis	ts and Engineers 4 th Edition	

1.2 Major (Core). Marks 50 (15 Hrs)

Course	se Title T2. Basic Electronics					
Course	e Credits	2				
1.1	Types of diod	e biasing (review), Bridge rectifier-ripple factor-Types	[5 Hr]			
	of filter circu	its-Zener diode-Zener diode as a voltage stabilizer-				
	solving Zener					
	Problem solvir	ng sessions	[3 Hr]			

			1		
	Reference: Principles Of Electronics V.K.Mehta, Rohit Mehta				
	S. CHAND & COMPANY LTD (6.1,6.6,6.8,6.9,6.10, 6.13				
	,6.14, 6.15, 6.18, 6.21,6.25,6.27)				
1.2	Binary number system- Decimal to binary conversion- Binary to	[5 Hr]			
	decimal conversion-octal number system-hexadecimal number		1		
	system- binary coded decimal code (BCD)-binary addition and binary				
	subtraction using 2's complement.				
	Problem solving sessions	[2 Hr]	1		
	Refeence: PRINCIPLES OF ELECTRONICS V.K.Mehta, Rohit		1		
	MehtaS. CHAND & COMPANY LTD (26.3,26.5,26.6,26.7, 26.8,				
	26.9)		1		
	RP Jain Modern digital electronics (2.4,2.5,2.6)	Ÿ	1		
	References:				
	RP Jain Modern digital electronics (5.3,5.4,5.5)		1		

PROGRAM	(s): F.YB.Sc.		SEMESTER: I				
Course: Pra	ctical 1		Course	Course Code: P1.			
Teaching Scl	heme		Evaluation Scheme				
Lectures (Hours per week)	Lectures (Hours per week) week) Week) Tutorial (Hours per week) week)			Continuous Internal Assessment (CIA) (Marks- 40)	Semester End Examination (Marks- 60)		
•	4	-	2	40	60		
Learning Ot To enable stu	jectives: dents to re understanding	of usage of basi	ic measuri	ng instruments.			

- acquire understanding of usage of basic measuring instruments
 plot graphs easily
 get an understanding of the working of analogue components.
 get an understanding of the working of digital components.

Course Outcomes:

A student will be able to,

CO1: demonstrate his/her practical skills.

CO2: practice the skills required to perform experiments in physics.

CO3: work with apparatus without fear.

CO4: correlate the ideas discussed in lectures to the experiments being carried out..

CO5: understand the concepts of errors and their estimation.

CO6: connect circuits, perform measurements and analyse observations.

Course code	P1. Practical	Credits
		2
	 Skills Identifying components Use of DMM Graph plotting Main experiments Bridge Rectifier, rectification, load regulation, ripple factor. Maximum power transfer theorem Zener Diode Characteristics. L-R circuit C-R circuit 	

Course code	Practical	Credits
	6. De-Morgan's Theorem using logic gates	
	7. NAND and NOR as Universal Building Blocks	
	8. Transistor Characteristics (CE mode)	
	9. Thermistor Characteristics	
	10. Constructing Half adder, Full adder	
	11. Photo-diode characteristics	
	12. LDR characteristics	
	13. Reading Scientific Articles (2 experiments equivalent)	
	Minimum 12 total experiments (skills and main) to be performed.	

1.3 Open Elective Courses (OEC)

Course Tit		Electrical and Electronic				
		Cadgets for all				
Course Cr	edits	4				
Course Ou	tcomoc	After going through the course, learners will be able to				
course ou		Arter going through the course, learners will be able to				
		1 Calculate the energy consumption for his/her house office	public			
		places.	public			
		2. Compare heating technologies for their advantages and disad	dvantages.			
		2. Distinguish between ionising and non-ionising redictions				
		5. Distinguish between follising and hon-follising fadiations.				
	-	1 Use digital compress makile compress officially				
		4. Use digital camera/ mobile camera effectively.				
		E Describe verious network peremeters				
		DESCRIPTE VALIOUS DELWOIN DATATIETETS				
		3. Desende various network parameters.				
Unit	Sub-Unit	Course/ Unit Title	Lectures			
Unit I	Sub-Unit	Course/Unit Title ELECTRICAL GADGETS AT HOME	Lectures			
Unit I	Sub-Unit	Concept of electricity voltage current power energy	Lectures			
Unit I	Sub-Unit	Course/ Unit Title ELECTRICAL GADGETS AT HOME Concept of electricity, voltage, current, power, energy. Types of conducting materials. Electrical ratings of various	Lectures 4			
Unit I	Sub-Unit	Course/Unit Title ELECTRICAL GADGETS AT HOME Concept of electricity, voltage, current, power, energy. Types of conducting materials. Electrical ratings of various appliances, electrical billing calculations	Lectures 4			
Unit I	Sub-Unit	Course/Unit Title ELECTRICAL GADGETS AT HOME Concept of electricity, voltage, current, power, energy. Types of conducting materials. Electrical ratings of various appliances, electrical billing calculations. Understanding light sources and units – LED_CEL, tube	Lectures 4			
Unit I	Sub-Unit	 Course/Unit Title ELECTRICAL GADGETS AT HOME Concept of electricity, voltage, current, power, energy. Types of conducting materials. Electrical ratings of various appliances, electrical billing calculations. Understanding light sources and units – LED, CFL, tube lights halogen lamps 	Lectures 4			
Unit I	Sub-Unit	Course/Unit Title ELECTRICAL GADGETS AT HOME Concept of electricity, voltage, current, power, energy. Types of conducting materials. Electrical ratings of various appliances, electrical billing calculations. Understanding light sources and units – LED, CFL, tube lights, halogen lamps	Lectures 4			
Unit	Sub-Unit 1.1 1.2	 Course/Unit Title ELECTRICAL GADGETS AT HOME Concept of electricity, voltage, current, power, energy. Types of conducting materials. Electrical ratings of various appliances, electrical billing calculations. Understanding light sources and units – LED, CFL, tube lights, halogen lamps Concept of heat energy and temperature scales. Types of 	Lectures 4 5			
Unit	Sub-Unit 1.1 1.2	 Course/Unit Title ELECTRICAL GADGETS AT HOME Concept of electricity, voltage, current, power, energy. Types of conducting materials. Electrical ratings of various appliances, electrical billing calculations. Understanding light sources and units – LED, CFL, tube lights, halogen lamps Concept of heat energy and temperature scales. Types of thermal materials. 	Lectures 4 5			
Unit I	Sub-Unit 1.1 1.2	 Course/Unit Title ELECTRICAL GADGETS AT HOME Concept of electricity, voltage, current, power, energy. Types of conducting materials. Electrical ratings of various appliances, electrical billing calculations. Understanding light sources and units – LED, CFL, tube lights, halogen lamps Concept of heat energy and temperature scales. Types of thermal materials. Understanding heating appliances – electric heaters, 	Lectures 4 5			

Unit	Sub-Unit	Course/ Unit Title	Lectures
		Understanding cooling devices – dry ice storage, coolers, air-conditioning, refrigerator.	
	1.3	Understanding medical instruments: ionising and non-ionising radiations, X rays, MRI, MRA, CT scan, PET scan, ultrasonography Imaging using ECG and EEG	6
II		ELECTRONIC AND COMMUNICATING GADGETS	
	2.1	Digital and analog data. Electronic signals and communication media - wired and wireless communications. wifi, bluetooth, satellite communication. LAN, WAN and larger networks. Internet and world wide web. Concept of bandwidth and data compression, various file formats, 4G/5G networks.	5
	2.2	Mobile phone, PC, laptop, tablets, smart TV, Digital camera: – DSLR/Mirrorless/Mobile camera	5
	2.3	Various Social media platforms and online communication etiquette Artificial intelligence, AI tools Online transactions and safety issues	5

Reference:-

https://www.youtube.com/c/Theengineeringmindset

Modality of Assessment Theory Examination Pattern: (for Discipline Specific Core papers) A. Internal Assessment- 40%- 40 Marks per paper

Sr. No.	Evaluation Type	Marks
1	Assignment/ Case study/ field visit report/ presentation/ project Multiple assignments may be given.	40
	Total	40

A. Semester End Theory Examination

- 1. Duration These examinations shall be of **two hours** duration.
- 2. Theory question paper pattern:
 - a) There shall be 3 questions each of 20 marks with different levels of difficulty.
 - b) All questions shall be compulsory with at least 50% internal choice within the questions. (For example, 4 out of 6 sub-questions or 3 out of 6 **sub-questions to be solved**).

All units will be given equal weightage

Skill Enhancement Course

PROGRAM	(s): F.YB.Sc.		SEMES	TER: I			
Course: Bas Calculations	ic Measurements	and	Course Code: SEC				
Teaching Sc	heme		Evaluation Scheme				
Lectures (Hours per week)	Practical (Hours per week)	Tutorial (Hours per week)	Credit	Continuous Internal Assessment (CIA) (Marks- 40)	Semester End Examination (Marks- 60)		
-	4	-	2	-	60		
Learning Ol 1) expos 2) devel 3) devel	Learning Objectives: expose students to basic instrumentation develop measurement skills develop analytical skills in laboratory measurements 						
Course Oute After complet 1) enlist 2) use b 3) record 4) identi 5) plot g	comes: eting this course, parameters of m asic measuring in d observations w ify types of unce graphs of given q	learner will be leasuring instru- nstruments to n ith correct sig rtainties in the uantities	e able to uments measure p nificant di measurer	hysical quantities gits nent			

Practical

- 1. Measuring size: travelling microscope, micrometer screw, vernier callipers
- 2. Time measurement: using stop-watch
- 3. Mass measurement: single pan balance
- 4. Use of Digital multimeter for measurement of various electrical parameters
- 5. Measurement of internal resistance of voltmeter, current-meter and loadingeffect
- 6. Measurement of output impedance of signal generator
- 7. Constant voltage source: current capacity and internal resistance
- 8. Constant current source: internal resistance
- 9. Uncertainty analysis: sources of uncertainties, types of uncertainties
- 10. Propagation of uncertainties
- 11. Graph plotting I: linear (slope, interpolation, extrapolation)
- **12.** Graph plotting II: Non-linear graphs (slope at given point, interpolation), converting non-linear to linear from known equation
- 13. Statistical analysis of data I
- 14. Statistical analysis of data II

Minimum 10 experiments to be completed.

FYBSc Sem II syllabus Physics

paper – II

COURSE TITLE: Mechanics and Waves COURSE CODE: T3 [CREDITS - 02]

Total contact hours : 30

After the successful completion of the Course, the learner will be able to:

- 1. Apply the principle of superposition to two perpendicular SHMs
- 2. Understand the Physics of the compound pendulum
- 3. Apply the wave equation to derive velocity of waves in medium
- 4. Understand how ultrasound is produced and it's applications
- 5. Understand and apply the principles of acoustics

Learning Objectives:

The module is intended to

- 1. Lay the groundwork for Classical Mechanics
- 2. Apply Newtonian dynamics to complicated systems such as compound pendulums
- 3. Be able to apply conservation laws to a system of particles

Learning Outcome:

After the successful completion of the module, the learner will be able to:

- 1. Elucidate the basic principles of mechanics
- 2. Apply mechanics to a system of particles

Solve a wide variety of problems in mechanics

	Composition of two SHM: (Only for review: Definition of SHM and	[3 Hr]
1.1	composition of two parallel SHM's of same period.) Composition of	
	two perpendicular S H M's having the same period and period in the	
	ratio 1:2, Types of Lissajous figures.	[1 Hr]
	Problem solving	[1 111]
	Ref: SPP:2.4.1, 2.4.3, 2.4.	
1.2	Mechanics of a system of particles: Centre of mass of a system of	[4 Hr]
	particles, Linear momentum of a system of particles and its	
	conservation. Angular momentum of a system of particles and its	
	conservation (only statement). Rocket motion (neglecting gravity)	
	(derivation up to maximum velocity and only final expression for	
	distance travelled)	
	Problem solving	[2 Hr]
 _	Ref: TM: 9.2, 9.3, 9.4, 9.11	
 1.3	Compound pendulum: Expression for period, maximum and minimum	[3 Hr]
	time period, centers of suspension and oscillations, reversible	
	compound pendulum, compound pendulum and simple pendulum- a	
~	relative study, torsion pendulum-measurements of rigidity modulus	
	Problem solving	
	KJ: 1.2 to 1.8	[2 Hr]
Learni	ing Objectives:	
The mo	odule is intended to	
1.	Give a general overview of wave motion	
2.	Introduce the learner to Ultrasonic and its applications	
3.	Give a brief introduction to acoustics	
Learni	ing Outcome:	
After th	ne successful completion of the module, the learner will be able to:	
1.	Solve a wide variety of numerical related to wave motions	
2.	Understand how ultrasonic are produced and applied.	
3.	Understand the principles behind acoustic design	

2.1	Wave motion in one dimension: General solution of wave equation,	[3 Hr]
	Classification of waves, Examples of one-dimensional waves, derivation	
	of velocity of Transverse wave on string, expression of velocity of	
	longitudinal waves in rod.	
	Problem solving	[2 Hr]

	Ref: SPP: 6.1, 6.2, 6.5, 6.5.1, 6.5.2, 6.5.3.	
2.2	Ultrasonic: Piezoelectric effect, Production of Ultrasonic waves:	[3 Hr]
	Magnetostriction method and Piezoelectric Crystal Method, Detection,	
	Properties and applications of Ultrasonic Waves, (Formula of frequency	
	of ultrasonic waves)	
	Problem solving	
	Ref: MS: 5.1 to 5.6	[2 Hr]
2.3	Acoustics of Buildings: Reverberation, Sabine's formula, Determination	n[3 Hr]
	of Absorption coefficient, Acoustics of Buildings, factors affecting	2
	Acoustics of Buildings, Sound distribution in an auditorium. Distinction	1
	between sound and noise	
	Sound isolation – transmission loss- noise reduction – Speech privacy	-
	construction criteria. Noise control in specific	
	types of buildings like – auditoriums, residential buildings, hotels, school	,
	hospitals, offices, libraries	
	Problem solving	[2 Hr]
	Ref: MS: 5.8, 5.9, 5.10, 5.12, 5.13, 5.14, and 5.15	
Referen	ices:	
1. 5	SPP: Fundamentals of vibration and waves – S P Puri (Tata McGraw Hill)	
2. 7	TM: Classical Dynamics – Thornton and Marion (5th Ed.) Thomson Books.	
3. 1	MS: : Properties of matter and Acoustics – R Murugeshan and K. Shivaprasa	th, S
	Chand & Co. Ltd. (2005-Ed)	
4.]	HP: H. S. Hans and S. P. Puri, Tata McGraw Hill (2nd ED.)	
5. 1	RHW:Fundamentals of Physics. Resnick, Halliday and Walker (9th Ed. 2012). Wiley.
6.	KJ:College Physics I,Kailas R Jagdeo	
Additio	onal references :	
Moore.	J.E., Design for Good Acoustics and Noise Control	

Discipline Specific Core Course 1

PROGRAM(s): F.Y.B.Sc.			SEMESTER: II					
Course: 7	hern	nody	namics		Course (Code: T4		
Teaching	Scher	me			Evaluation Scheme			
Lectures (hours per week)	r	Pra (hou wee	ctical urs per ek)	Tutorials (hours per week)	r Credits Continuous Semester End Internal assessment (Marks - 60)			ster End nination ks - 60)
2			-	-	2	40		60
Learning 1: Analyse 2: Model 1 3: Underst 4: Predict	Learning Objectives: 1: Analyse natural phenomena 2: Model real systems 3: Understand behaviour of bulk matter 4: Predict evolution of a system							
Course O A student CO1: desc CO2: corr CO3: iden CO4: appl CO5: gras CO6: anal	Course Outcomes: A student will be able to, CO1: describe macroscopic phenomena based on molecular theory of matter CO2: correlate experimental observations to theoretical models CO3: identify thermodynamic quantities and processes associated with different systems. CO4: apply the first law of thermodynamics to various systems CO5: grasp the concept of reversibility and irreversibility in systems							
Unit	Su Ur	b- nit	Course/	Unit Title				Lectures
Ι			Molec	cular Structure	e of Matte	r		15
	1.1		Dilute gas Equation distribution	s System – Equ of state, Kineti on	iilibrium pl c theory, N	nenomena, Ideal Iaxwellian veloc	gas eity	
	1.2	2	Dilute gas fluctuation	s System – Nor ons, mechanism	n-equilibriu of transpo	im phenomena, ort		
	1.3	3	Real gas Theoretic	System – Expe al Model, Van-	rimental ol der-Waal e	oservations, equation of state.		
	1.4	ł	Phase rule and phase curves					
II			Basic	Thermodynam	nics			15
	2.1	l	Basics – System, Environment, Boundaries, Interactions, Physical quantities, processes, Concept of Equilibrium					
	2.2	2	Zeroth La temperatu	w of Thermody	ynamics, C y at differe	concept of ent scales		

2.3	First Law of Thermodynamics – Concept of Heat and Work, Adiabatic Processes, First Law of Thermodynamics, Relations between Thermodynamic quantities.	
2.4	Applications of the First Law – Processes in Matter, Carnot Cycle, Joule-Thompson effect, Heat engines, Refrigerators.	

References:- Thermal Physics, Garg, Bansal Ghosh, Tata-McGraw Hill

Additional References:

- 1) Heat and Thermodynamics, M W Zemansky, McGraw Hill (5th and 7th edition)
- 2) Thermodynamics, Kinetic Theory, and Statistical Thermodynamics, F. W. Sears, G. L. Salinger, Addison- Wesley (3rd Edition)

PROGRAM: F.Y.B.Sc.			SEMESTER:II			
Course: Practical 2			Course Code: P2			
Teaching Scheme			Evaluation Scheme			
Lectures (Hours per week)	Practical (Hours per week)	Tutorial (Hours per week)	Credit	Continuous Internal Assessment (CIA) (Marks- 40)	Semester End Examination (Marks- 60)	
-	4	-	2	40	60	
Learning Objectives: To enable students to 1. understand some fundamental ideas of Thermodynamics. 2. efficiently use mobile or other cameras. 3. make use of optical coupling of devices for real life usage. 4. understand aberration in optical systems.						
Course Outc A student wil CO1) der CO2) und CO3) un CO4) cor	omes: Il be able to nonstrate their derstand and pa derstand the us rrelate their ph	r practical skills. ractice the skills v se of apparatus an vsics theory conce	while doin nd their use	g physics practical. e without fear. gh practical.		

CO3) Understand the concepts of errors and their estimation.

Detailed syllabus

Practical (WSPHYMJ123)

Demonstration Experiments

- 1) Thermocouple
- 2) Lens aberrations
- 3) Mobile Camera Settings
- 4) Lux meter
- **Main Experiments**

1	Spectrometer(µ)	
2	Lens Combination	
3	LASER Divergence	
4	LDR Characteristics	
5	Surface Tension of Biological fluid	
6	Frequency of A.C. mains	
7	Viscosity by Stoke's Method	
8	Flywheel	
9	Torsional Oscillations	
10	Bifilar Pendulum	
11	Y by vibrations	
12	Thermocouple	

Minimum of total 12 experiments (demonstration and main) to be completed.

PROGRAM: F.Y.B.Sc.			SEMESTER: 2			
Course: Mathematical Techniques			Course Code:			
Teaching Scheme			Evaluation Scheme			
Lectures (Hours per week)	Practical (Hours per week)	Tutorials (Hours per week)	Credits	Continuous Internal Assessment CIA Marks	Semester End Examination Marks	
-	4	-	2	-	60	

Learning Objectives:

- 1) Develop mathematical skills required for theories in physics
- 2) Develop numerical skills
- 3) Appreciate Mathematical modeling of the physical world

Course Outcomes:

4

After completing the course, learner will be able to

- 1) convert physical situations into mathematical equations
- 2) solve mathematical equations using analytical methods when possible
- 3) solve mathematical equations using numerical methods
- 4) extract physically meaningful conclusions from numerical / algebraic expressions
- 5) build mathematical models for physical situations

Unit	Subunit	Unit Title	
Ι		Partial Differentiation	
	1.1	Introduction and Notation	
	1.2	Power series in two variables	
	1.3	Total Differentials	
	1.4	Approximations using differentials	
	1.5	Chain Rule or differentiating a function of a function	
	1.6	Implicit differentiation	
	1.7	More chain rule	
	1.8	Application of partial differentiation to maximum and minimum problems	
	1.9	Maximum and minimum problems with constraints: Lagrange Multipliers	
Unit	Subunit	Unit Title	Lectures
	1.10	Endpoint or boundary value problems	
	1.11	Change of variables	
	1.12	Differentiation of integrals: Leibneitz rule	
	1.13	Miscellaneous problems	
2		Vector Analysis	15
	2.1	Introduction	

2.2	Applications of Vector multiplication	
2.3	Triple products	
2.4	Differentiation of vectors	
2.5	Fields	
2.6	Directional derivative: Gradient	
2.7	Some other expressions involving ∇	
2.8	Line Integrals	
2.9	Green's theorems in the plane	
2.10	The divergence and divergence theorem (applications only, mathematical proof not needed)	
2.11	The curl and Stokes theorem (applications only, mathematical proof not needed)	
2.12	Miscellaneous problems	

References:-

1. Boas, Mary L., Mathematical Methods in the Physical Sciences, 3rd Edition, Wiley, 2023

Additional Reference:

- MATHEMATICAL METHODS FOR PHYSICISTS A Comprehensive Guide SEVENTH EDITION — George B. Arfken Miami University Oxford, OH Hans J. Weber University ofVirginia Charlottesville, VA Frank E. Harris University of Utah, Salt Lake City, UT
- 2. Vector Analysis and an introduction to Tensor Analysis—Seymour Lipschutz, DennisSpellman, Murray R. Spiegel.